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Abstract Storage systems in supercomputers are a major
reason for service interruptions. RAID solutions alone can-
not provide sufficient protection as 1) growing average disk
recovery times make RAID groups increasingly vulnerable
to disk failures during reconstruction, and 2) RAID does not
help with higher-level faults such failed I/O nodes.

This paper presents a complementary approach based on
the observation that files in the supercomputer scratch space
are typically accessed by batch jobs whose execution can
be anticipated. Therefore, we propose to transparently, se-
lectively, and temporarily replicate ”active” job input data
by coordinating the parallel file system with the batch job
scheduler. We have implemented the temporal replication
scheme in the popular Lustre parallel file system and eval-
uated it with real-cluster experiments. Our results show that
the scheme allows for fast online data reconstruction, witha
reasonably low overall space and I/O bandwidth overhead.

Keywords Temporal Replication· Batch Job Scheduler·
Reliability · Supercomputer· Parallel File System

1 Introduction

Coping with failures is a key issue to address as we scale to
Peta- and Exa-flop supercomputers. The reliability and us-
ability of these machines rely primarily on the storage sys-
tems providing the scratch space. Almost all jobs need to
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read input data and write output/checkpoint data to the sec-
ondary storage, which is usually supported through a high-
performance parallel file system. Jobs are interrupted or re-
run if input/output data is unavailable or lost.

Storage systems have been shown to consistently rank
as the primary source of system failures, according to logs
from large-scale parallel computers and commercial data
centers [11]. This trend is only expected to continue as in-
dividual disk bandwidth grows much slower than the over-
all supercomputer capacity. Therefore, the number of disk
drives used in a supercomputer will need to increase faster
than the overall system size. It is predicted that by 2018,
a system at the top of the top500.org chart will have more
than 800,000 disk drives with around 25,000 disk failures
per year [18].

Currently, the majority of disk failures are masked by
hardware solutions such as RAID [15]. However, it is be-
coming increasingly difficult for common RAID configura-
tions to hide disk failures as disk capacity is expected to grow
by 50% each year, which increases the reconstruction time.
The reconstruction time is further prolonged by the “polite”
policy adopted by RAID systems to make reconstruction
yield to application requests. This causes a RAID group to
be more vulnerable to additional disk failures during recon-
struction [18].

According to recent studies [12], disk failures are only
part of the sources causing data unavailability in storage sys-
tems. RAID cannot help with storage node failures. In next-
generation supercomputers, thousands or even tens of thou-
sands of I/O nodes will be deployed and will be expected to
endure multiple concurrent node failures at any given time.
Consider the Jaguar system at Oak Ridge National Labora-
tory, which is on the roadmap to a petaflop machine (cur-
rently No. 5 on the Top500 list with 23,412 cores and hun-
dreds of I/O nodes). Our experience with Jaguar shows that
the majority of whole-system shutdowns are caused by I/O
nodes’ software failures. Although parallel file systems, such
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as Lustre [6], provide storage node failover mechanisms, our
experience with Jaguar again shows that this configuration
might conflict with other system settings. Further, many su-
percomputing centers hesitate to spend their operations bud-
get on replicating I/O servers and instead of purchasing more
FLOPS.

Figure 1 gives an overview of an event timeline describ-
ing a typical supercomputing job’s data life-cycle. Users
stage their job input data from elsewhere to the scratch space,
submit their jobs using a batch script, and offload the output
files to archival systems or local clusters. For better spaceuti-
lization, the scratch space does not enforce quotas but purges
files after a number of days since the last access. Moreover,
job input files are often read-only (also read-once) and out-
put files are write-once.

Although most supercomputing jobs performing nu-
merical simulations are output-intensive rather than input-
intensive, the input data availability problem poses two
unique issues. First, input operations are more sensitive to
server failures. Output data can be easily redirected to sur-
vive runtime storage failures usingeager offloading [14].
As mentioned earlier, many systems like Jaguar do not have
file system server failover configurations to protect against
input data unavailability. In contrast, during the output pro-
cess, parallel file systems can more easily skip failed servers
in striping a new file or perform restriping if necessary. Sec-
ond, loss of input data often brings heavier penalty. Output
files already written can typically withstand temporary I/O
server failures or RAID reconstruction delays as job owners
have days to perform their stage-out task before the files are
purged from the scratch space. Input data unavailability, on
the other hand, incurs job termination and resubmission. This
introduces high costs for job re-queuing, typically ordersof
magnitude larger than the input I/O time itself.

Fortunately, unlike general-purpose systems, in super-
computers we can anticipatefuturedata accesses by check-
ing the job scheduling status. For example, a compute job is
only able to read its input data during its execution. By co-
ordinating with the job scheduler, a supercomputer storage
system can selectively provide additional protection onlyfor
the duration when the job data is expected to be accessed.
Contributions: In this paper, we proposetemporal file repli-
cation, wherein a parallel file system performs transparent
and temporary replication of job input data. This facilitates
fast and easy file reconstruction before and during a job’s ex-
ecution without additional user hints or application modifi-
cations. Unlike traditional file replication techniques, which
have mainly been designed to improve long-term data per-
sistence and access bandwidth or to lower access latency,
the temporal replication scheme targets the enhancement of
short-term data availability centered around job executions
in supercomputers.

We have implemented our scheme in the popular Lus-
tre parallel file system and combined it with the Moab job
scheduler by building on our previous work on coinciding

Table 1 Configurations of top five supercomputers as of 06/2008

System # Aggr- Scratch Memory Top
Cores egate Space to 500

Memory (TB) Storage Rank
(TB) Ratio

RoadRunner(LANL) 122400 98 2048 4.8% 1
BlueGene/L(LLNL) 106496 73.7 1900 3.8% 2

BlueGene/P(Argonne) 163840 80 1126 7.1% 3
Ranger(TACC) 62976 123 1802 6.8% 4
Jaguar(ORNL) 23412 46.8 600 7.8% 5

input data staging alongside computation [28]. We have also
implemented a replication-triggering algorithm that coordi-
nates with the job scheduler to delay the replica creation. Us-
ing this approach, we ensure that the replication completes
in time to have an extra copy of the job input data before its
execution.

We then evaluate the performance by conducting real-
cluster experiments that assess the overhead and scalability
of the replication-based data recovery process. Our experi-
ments indicate that replication and data recovery can be per-
formed quite efficiently. Thus, our approach presents a novel
way to bridge the gap between parallel file systems and job
schedulers, thereby enabling us to strike a balance between
an HPC center resource consumption and serviceability.

2 Temporal Replication Design

Supercomputers are heavily utilized. Most jobs spend sig-
nificantly more time waiting in the batch queue than actually
executing. The popularity of a new system ramps up as it
goes towards its prime time. For example, from the 3-year
Jaguar job logs, the average job wait-time:run-time ratio in-
creases from 0.94 in 2005, to 2.86 in 2006, and 3.84 in 2007.

2.1 Justification and Design Rationale

A key concern about the feasibility of temporal replication
is the potential space and I/O overhead replication might
incur. However, we argue that by replicating selected “ac-
tive files” during their “active periods”, we are only repli-
cating a small fraction of the files residing in the scratch
space at any given time. To estimate the extra space require-
ment, we examined the sizes of the aggregate memory space
and the scratch space on state-of-the-art supercomputers.
The premise is that with today’s massively parallel machines
and with the increasing performance gap between memory
and disk accesses, batch applications are seldom out-of-core.
This also agrees with our observed memory use pattern on
Jaguar (see below). Parallel codes typically perform inputat
the beginning of a run to initialize the simulation or to readin
databases for parallel queries. Therefore, the aggregate mem-
ory size gives a bound for the total input data size of active
jobs. By comparing this estimate with the scratch space size,
we can assess the relative overhead of temporal replication.
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Fig. 1 Event timeline with ideal and implemented replication intervals

Table 1 summarizes such information for the top five su-
percomputers [22]. We see that the memory-to-storage ratio
is less than 8%. Detailed job logs with per-job peak memory
usage indicate that the above approximation of using the ag-
gregate memory size significantly overestimates the actual
memory use (discussed later in this subsection). While the
memory-to-storage ratio provides a rough estimation of the
replication overhead, in reality, however, a number of other
factors need to be considered. First, when analyzing the stor-
age space overhead, queued jobs’ input files cannot be ig-
nored, since their aggregate size can be even larger than that
of running jobs. In the following sections, we propose addi-
tional optimizations to shorten the lifespan of replicas. Sec-
ond, when analyzing the bandwidth overhead, the frequency
of replication should be taken into account. Jaguar’s job logs
show an average job run time of around 1000 seconds and an
average aggregate memory usage of 31.8 GB, which leads to
a bandwidth consumption of less than 0.1% of Jaguar’s total
capacity of 284 GB/s. For this reason, we primarily focus on
the space overhead in the following discussions.

Next, we discuss a supercomputer’s usage scenarios and
configuration in more detail to justify the use of replication
to improve job input data availability.

Even though replication is a widely used approach in
many distributed file system implementations, it is seldom
adopted in supercomputer storage systems. In fact, many
popular high-performance parallel file systems (e.g., Lus-
tre and PVFS) do not even support replication, mainly due
to space concerns. The capacity of the scratch space is im-
portant in (1) allowing job files to remain for a reasonable
amount of time (days rather than hours), avoiding the loss of
precious job input/output data, and (2) allowing giant “hero”
jobs to have enough space to generate their output. Blindly
replicating all files, even just once, would reduce the effec-
tive scratch capacity to half of its original size.

Temporal replication addresses the above concern by
leveraging job execution information from the batch sched-
uler. This allows it to only replicate a small fraction of “ac-
tive files” in the scratch space by letting the “replication win-
dow” slide as jobs flow through the batch queue. Tempo-
ral replication is further motivated by several ongoing trends

in supercomputer configurations and job behavior. First, as
mentioned earlier, Table 1 shows that the memory to scratch
space ratio of the top 5 supercomputers is relatively low. Sec-
ond, it is rather rare for parallel jobs on these machines to
fully consume the available physical memory on each node.
A job may complete in shorter time on a larger number of
nodes due to the division of workload and data, resulting in
lower per-node memory requirements at a comparable time-
node charge. Figure 2 shows the per-node memory usage of
bothrunningandqueuedjobs over one month on the ORNL
Jaguar system. It backs our hypothesis that jobs tend to be in-
core, with their aggregate peak memory usage providing an
upper bound for their total input size. We also found the ac-
tual aggregate memory usage averaged over the 300 sample
points to be significantly below the total amount of memory
available shown in Table 1: 31.8 GB for running jobs and
49.5 GB for queued jobs.

2.2 Delayed Replica Creation

Based on the above observations about job wait times and
cost/benefit trade-offs for replication in storage space, we
propose the following design of an HPC-centric file repli-
cation mechanism.

When jobs spend a significant amount of time waiting,
replicating their input files (either at stage-in or submission
time) wastes storage space. Instead, a parallel file system can
obtain the current queue status and determine areplication
trigger point to create replicas for a given job. The premise
here is to have enough jobs near the top of the queue, stocked
up with their replicas, such that jobs dispatched next will
have extra input data redundancy. Additional replication will
be triggered by job completion events, which usually result
in the dispatch of one or more jobs from the queue. Since
jobs are seldom interdependent, we expect that supplement-
ing a modest prefix of the queued jobs with a second replica
of their input will be sufficient. Only one copy of a job’s in-
put data will be available before its replication trigger point.
However, this primary copy can be protected with periodic
availability checks and remote data recovery techniques pre-
viously developed and deployed by us [28].
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Completion of a large job is challenging as it can activate
many waiting jobs requiring instant replication of multiple
datasets. As a solution, we propose to query the queue status
from the job scheduler. Let the replication window,w, be
the length of the prefix of jobs at the head of the queue that
should have their replicas ready.w should be the smallest
integer such that:

w∑

i=0

|Qi| > max(R, αS),

where |Qi| is the number of nodes requested by theith
ranked job in the queue,R is the number of nodes used by
the largest running job,S is the total number of nodes in the
system, and the factorα(0 ≤ α) is a controllable parameter
to determine the eagerness of replication.

One problem with the above approach is that job queues
are quite dynamic as strategies such as backfilling are typi-
cally used with an FCFS or FCFS-with-priority scheduling
policy. Therefore, jobs do not necessarily stay in the queue
in their arrival order. In particular, jobs that require a small
number of nodes are likely to move ahead faster. To ad-
dress this, we augment the above replication window selec-
tion with a “shortcut” approach and define a thresholdT ,
0 ≤ T ≤ 1. Jobs that requestT · S nodes will have their
input data replicated immediately regardless of the current
replica window. This approach allows jobs that tend to be
scheduled quickly to enjoy early replica creation.

2.3 Eager Replica Removal

We can also shorten the replicas’ life span by removing the
extra copy once we know it is not needed. A relatively safe
approach is to perform the removal at job completion time.
Although users sometimes submit additional jobs using the
same input data, the primary data copy will again be pro-
tected with our offline availability check and recovery [28].
Further, subsequent jobs will also trigger replication as they
progress toward the head of the job queue.

Overall, we recognize that the input files for most in-
core parallel jobs are read at the beginning of job execu-
tion and never re-accessed thereafter. Hence, we have de-
signed aneager replica removalstrategy that removes the
extra replica once the replicated file has been closed by the
application. This significantly shortens the replication dura-
tion, especially for long-running jobs. Such an aggressivere-
moval policy may subject input files to a higher risk in the
rare case of a subsequent access further down in its execu-
tion. However, we argue that reduced space requirements for
the more common case outweigh this risk.

3 Implementation Issues

A Lustre [6] file system comprises of three key compo-
nents: clients, a MetaData Server (MDS), and Object Stor-
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age Servers (OSS). Each OSS can host several Object Stor-
age Targets (OST) that manage the storage devices. All our
modifications were made within Lustre and do not affect the
POSIX file system APIs. Therefore, data replication, failover
and recovery processes are entirely transparent to user appli-
cations.

3.1 Replica Management Services

In our implementation, a supercomputer’s head node dou-
bles as a replica management service node, running as a
Lustre client. Job input data is usually staged via the head
node making it well suited for initiating replication oper-
ations. Replica management involves generating a copy of
the input dataset at the appropriate replication trigger point,
scheduling periodic failure detection before job execution,
and also scheduling data recovery in response to reconstruc-
tion requests. Data reconstruction requests are initiatedby
the compute nodes when they observe storage failures dur-
ing file accesses. The replica manager serves as a coordina-
tor that facilitates file reorganization, replica reconstruction,
and streamlining of requests from the compute nodes in a
non-redundant fashion.



5

Replica Creation and Management: We use the copy
mechanism of the underlying file system to generate a replica
of the original file. In creating the replica, we ensure that it
inherits the striping pattern of the original file and is dis-
tributed on I/O nodes disjoint from the original file’s I/O
nodes. As depicted in Figure 3, the objects of the original
file and the replica form pairs (objects (0, 0′), (1, 1′), etc.).
The replica is associated with the original file for its lifetime
by utilizing Lustre’s extended attribute mechanism.

Failure Detection: For persistent data availability, we per-
form periodic failure detection before a job’s execution. This
offline failure detection mechanism was described in our pre-
vious work [28]. The same mechanism has been extended for
transparent storage failure detection and access redirection
during a job run. Both I/O node failures and disk failures will
result in an I/O error immediately within our Lustre patched
VFS system calls. Upon capturing the I/O error in the sys-
tem function, Lustre obtains the file name and the index of
the failed OST. Such information is then sent by the client to
the head node, which, in turn, initiates the object reorganiza-
tion and replica reconstruction procedures.

Object Failover and Replica Regeneration:Upon an I/O
node failure, either detected by the periodic offline check or
by a compute node through an I/O error, the aforementioned
file and failure information is sent to the head node. Using
several new commands that we have developed, the replica
manager will query the MDS to identify the appropriate ob-
jects in the replica file that can be used to fill the holes in
the original file. The original file’s metadata is updated sub-
sequently to integrate the replicated objects into the original
file for seamless data access failover. Since metadata updates
are inexpensive, the head node is not expected to become a
potential bottleneck.

To maintain the desired data redundancy during the pe-
riod that a file is replicated, we choose to create a “secondary
replica” on another OST for the failover objects after a stor-
age failure. The procedure begins by locating another OST,
giving priority to one that currently does not store any partof
the original or the primary replica file.1 Then, the failover ob-
jects are copied to the chosen OST and in turn integrated into
the primary replica file. Since the replica acts as a backup, it
is not urgent to populate its data immediately. In our imple-
mentation, such stripe-wise replication is delayed by 5 sec-
onds (tunable) and is offloaded to I/O nodes (OSSs).

Streamlining Replica Regeneration Requests:Due to
parallel I/O , multiple compute nodes (Lustre clients) are
likely to access a shared file concurrently. Therefore, in the
case of a storage failure, we must ensure that the head node
issues a single failover/regeneration request per file and per

1 In Lustre, file is striped across 4 OSTs by default. Since supercom-
puters typically have hundreds of OSTs, an OST can be easily found.

OST despite multiple such requests from different compute
nodes. We have implemented a centralized coordinator in-
side the replica manager to handle the requests in a non-
redundant fashion.

3.2 Coordination with Job Scheduler

As we discussed in Sections 1 and 2, our temporal replication
mechanism is required to be coordinated with the batch job
scheduler to achieve selective protection for “active” data. In
our target framework, batch jobs are submitted to asubmis-
sion managerthat parses the scripts, recognizes and records
input data sets for each job, and creates corresponding repli-
cation operations at the appropriate time.

To this end, we leverage our previous work [28] that au-
tomatically separates out data staging and compute jobs from
a batch script and schedules them by submitting these jobs to
separate queues (“dataxfer” and “batch”) for better control.
This enables us to coordinate data staging alongside com-
putation by setting up dependencies such that the compute
job only commences after the data staging finishes. The data
operation itself is specified in the PBS job script as follows
using a special “STAGEIN” directive:

#STAGEIN hsi -q -A keytab -k mykeytabfile -l user

“get /scratch/user/destinationfile : input file”

We extend this work by setting up a separate queue,
“ReplicaQueue”, that accepts replication jobs. We have also
implemented areplication daemonthat determines “what
and when to replicate”. The replication daemon creates a
new replication job in the ReplicaQueue so that it completes
in time for the job to have another copy of the data when it
is ready to run. The daemon periodically monitors the batch
queue status using theqstat tool and executes the delayed
replica creation algorithm described in Section 2.2. These
strategies enable the coordination between the job scheduler
and the storage system, which allows data replication only
for the desired window during the corresponding job’s life
cycle on a supercomputer.

4 Experimental Results

To evaluate the temporal replication scheme, we performed
real-cluster experiments. We assessed our implementationof
temporal replication in the Lustre file system in terms of the
online data recovery efficiency.

4.1 Experimental Framework

Our testbed comprised a 17-node Linux cluster at NCSU.
The nodes were 2-way SMPs, each with four AMD Opteron
1.76 GHz cores and 2 GBs of memory, connected by a Giga-
bit Ethernet switch. The OS used was Fedora Core 5 Linux
x86 64 with Lustre 1.6.3. The cluster nodes were setup as
I/O servers, compute nodes (Lustre clients), or both, as dis-
cussed later.
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4.2 Failure Detection and Offline Recovery

As mentioned in Section 3.1, before a job begins to run, we
periodically check for failures on OSTs that carry its input
data. The detection cost is less than 0.1 seconds as the num-
ber of OSTs increases to 256 (16 OSTs on each of the 16
OSSs) in our testbed. Since failure detection is performed
when a job is waiting, it incurs no overhead on job execu-
tion itself. When an OST failure is detected, two steps are
performed to recover the file from its replica: object failover
and replica reconstruction. The overhead of object failover
is relatively constant (0.84-0.89 seconds) regardless of the
number of OSTs and the file size. This is due to the fact that
the operation only involves the MDS and the client that ini-
tiates the command. Figure 4 shows the replica reconstruc-
tion (RR) cost with different file sizes. The test setup con-
sisted of 16 OSTs (1 OST/OSS). We varied the file size from
128MB to 2GB. With one OST failure, the data to recover
ranges from 8MB to 128MB causing a linear increase in RR
overhead. Figure 4 also shows that thewhole file reconstruc-
tion (WFR), the conventional alternative to our more selec-
tive scheme where the entire file is re-copied, has a much
higher overhead. In addition, RR cost increases as the chunk
size decreases due to the increased fragmentation of data ac-
cesses.

4.3 Online Recovery

4.3.1 Application 1: Matrix Multiplication (MM)

To measure on-the-fly data recovery overhead during a job
run with temporal replication, we used MM, an MPI kernel
that performs dense matrix multiplication. It computes the
standardC = A ∗ B operation, whereA, B andC aren ∗ n

matrices.A andB are stored contiguously in an input file.
We varyn to manipulate the problem size. Like in many ap-
plications, only one master process reads the input file, then
broadcasts the data to all the other processes for parallel mul-
tiplication using a BLOCK distribution.

Figure 5 depicts the MM recovery overhead with differ-
ent problem sizes. Here, the MPI job ran on 16 compute
nodes, each with one MPI process. The total input size was
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varied from 128MB to 2GB by adjustingn. We configured
9 OSTs (1 OST/OSS), with the original file residing on 4
OSTs, the replica on another 4, and the reconstruction of the
failover object occurring on the remaining one. Limited by
our cluster size, we let nodes double as both I/O and compute
nodes.

To simulate random storage failures, we varied the point
in time where a failure occurs. In “up-front”, an OSTs failure
was induced right before the MPI job started running. Hence,
the master process experienced an I/O error upon its first data
access to the failed OST. With “mid-way”, one OST failure
was induced mid-way during the input process. The master
encountered the I/O error amidst its reading and sent a recov-
ery request to the replica manager on the head node. Figure 5
indicates that the application-visible recovery overheadwas
almost constant for all cases (right around 1 second) consid-
ering system variances. This occurs because only one object
was replaced for all test cases while only one process was
engaged in input. Even though the replication reconstruc-
tion cost rises as the file size increases, this was hidden from
the application. The application simply progressed with the
failover object from the replica while the replica itself was
replenished in the background.

4.3.2 Application 2: mpiBLAST

To evaluate the data recovery overhead using temporal repli-
cation with a read-intensive application, we tested with mpi-
BLAST [8], which splits a database into fragments and per-
forms a BLAST search on the worker nodes in parallel. Since
mpiBLAST is more input-intensive, we examined the impact
of a storage failure on its overall performance. The differ-
ence between the job execution times with and without fail-
ure, i.e., the recovery overhead, is shown in Figure 6. Since
mpiBLAST assigns one process as the master and another to
perform file output, the number of actual worker processes
performing parallel input is the total process number minus
two.
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The Lustre configurations and failure modes used in the
tests were similar to those in the MM tests. Overall, the im-
pact of data recovery on the application’s performance was
small. As the number of workers grew, the database was
partitioned into more files. Hence, more files resided on the
failed OST and needed recovery. As shown by Figure 6, the
recovery overhead grew with the number of workers. Since
each worker process performed input at its own pace and the
input files were randomly distributed to the OSTs, the I/O
errors captured on the worker processes occurred at different
times. Hence, the respective recovery requests to the head
node were not issued synchronously in parallel but rather in
a staged fashion. With many applications that access a fixed
number of shared input files, we expect to see a much more
scalable recovery cost with regard to the number of MPI pro-
cesses using our techniques.

5 Related Work

RAID recovery: Disk failures can often be masked by stan-
dard RAID techniques [15]. However, RAID is geared to-
ward whole disk failures and does not address sector-level
faults [1,10,17]. It is further impaired by controller failures
and multiple disk failures within the same group. Without
hot spares, reconstruction requires manual intervention and
is time consuming. With RAID reconstruction, disk arrays
either run in a degraded (not yielding to other I/O requests)
or polite mode. In a degraded mode, busy disk arrays suffer
a substantial performance hit when crippled with multiple
failed disks [27,20]. This degradation is even more signifi-
cant on parallel file systems as files are striped over multiple
disk arrays and large sequential accesses are common. Un-
der a polite mode, with rapidly growing disk capacity, the
total reconstruction time is projected to increase to days sub-
jecting a disk array to additional failures [18]. Our approach
complements RAID systems by providing fast recovery pro-
tecting against non-disk and multiple disk failures.

Recent work on popularity-based RAID reconstruc-
tion [21] rebuilds more frequently accessed data first, thereby
reducing reconstruction time and user-perceived penalties.

However, supercomputer storage systems host transient job
data, where “unaccessed” job input files are often more im-
portant than “accessed” ones. In addition, such optimizations
cannot cope with failures beyond RAID’s protection at the
hardware level.

Replication: Data replication creates and stores redundant
copies (replicas) of datasets. Various replication techniques
have been studied [3,7,19,25] in many distributed file sys-
tems [4,9,13]. Most existing replication techniques treatall
datasets with equal importance and each dataset with static,
time-invariant importance when making replication deci-
sions. An intuitive improvement would be to treat datasets
with different priorities. To this end, BAD-FS [2] performs
selective replication according to a cost-benefit analysis
based on the replication costs and the system failure rate.
Similar to BAD-FS, our approach also makes on-demand
replication decisions. However, our scheme is more “access-
aware” rather than “cost-aware”. While BAD-FS still cre-
ates static replicas, our approach utilizes explicit informa-
tion from the job scheduler to closely synchronize and limit
replication to jobs in execution or soon to be executed.

Erasure coding: Another widely investigated technique is
erasure coding [5,16,26]. With erasure coding,k parity
blocks are encoded inton blocks of source data. When a
failure occurs, the whole set ofn + k blocks of data can be
reconstructed with anyn surviving blocks through decoding.

Erasure coding reduces the space usage of replication but
adds computational overhead for data encoding/decoding.
In [24], the authors provide a theoretical comparison be-
tween replication and erasure coding. In many systems, era-
sure coding provides better overall performance balancing
computation costs and space usage. However, for supercom-
puter centers, its computation costs will be a concern. This
is because computing time in supercomputers is a precious
commodity. At the same time, our data analysis suggests that
the amount of storage space required to replicate data for
active jobs is relatively small compared to the total storage
footprint. Therefore, compared to erasure coding, our ap-
proach is more suitable for supercomputing environments,
which is verified by our experimental study.

Remote reconstruction: Some of our previous studies
[23,28] investigated approaches for reconstructing missing
pieces of datasets from data sources where the job input
data was originally staged from. We have shown in [28]
that supercomputing centers’ data availability can be drasti-
cally enhanced by periodically checking and reconstructing
datasets for queued jobs while the reconstruction overheads
are barely visible to users.

Both remote patching and temporal replication will be
able to help with storage failures at multiple layers. Whilere-
mote patching poses no additional space overhead, the patch-
ing costs depend on the data source and the end-to-end net-
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work transfer performance. It may be hard to hide them from
applications during a job’s execution. Temporal replication,
on the other hand, trades space (which is relatively cheap
at supercomputers) for performance. It provides high-speed
data recovery and reduces the space overhead by only repli-
cating the data when it is needed. Our optimizations pre-
sented in this paper aim at further controlling and lowering
the space consumption of replicas.

6 Conclusion

In this paper, we have presented a novel temporal replica-
tion scheme for supercomputer job data. By creating addi-
tional data redundancy for transient job input data and coor-
dinating the job scheduler and the parallel file system, we
allow fast online data recovery from local replicas with-
out user intervention or hardware support. This general-
purpose, high-level data replication can help avoid job fail-
ures/resubmission by reducing the impact of both disk fail-
ures or software/hardware failures on the storage nodes. Our
implementation, using the widely used Lustre parallel file
system and the Moab scheduler, demonstrates that replica-
tion and data recovery can be performed efficiently.
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